MakeItFrom.com
Menu (ESC)

EN 1.4886 Stainless Steel vs. C96300 Copper-nickel

EN 1.4886 stainless steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4886 stainless steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150
Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 45
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
49
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 300
430

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1100
240
Melting Completion (Liquidus), °C 1390
1200
Melting Onset (Solidus), °C 1340
1150
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 12
37
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
42
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.4
5.1
Embodied Energy, MJ/kg 76
76
Embodied Water, L/kg 190
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
59
Resilience: Unit (Modulus of Resilience), kJ/m3 230
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 3.1
10
Thermal Shock Resistance, points 14
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.15
0 to 0.15
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
72.3 to 80.8
Iron (Fe), % 38.7 to 49
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.25 to 1.5
Nickel (Ni), % 33 to 37
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 1.0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Residuals, % 0
0 to 0.5