MakeItFrom.com
Menu (ESC)

EN 1.4886 Stainless Steel vs. S39274 Stainless Steel

Both EN 1.4886 stainless steel and S39274 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4886 stainless steel and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 45
17
Fatigue Strength, MPa 280
380
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Shear Strength, MPa 400
560
Tensile Strength: Ultimate (UTS), MPa 580
900
Tensile Strength: Yield (Proof), MPa 300
620

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1390
1480
Melting Onset (Solidus), °C 1340
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.4
4.3
Embodied Energy, MJ/kg 76
60
Embodied Water, L/kg 190
180

Common Calculations

PREN (Pitting Resistance) 19
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
140
Resilience: Unit (Modulus of Resilience), kJ/m3 230
940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 3.1
4.2
Thermal Shock Resistance, points 14
25

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 17 to 20
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 38.7 to 49
57 to 65.6
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 33 to 37
6.0 to 8.0
Nitrogen (N), % 0 to 0.1
0.24 to 0.32
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 1.0 to 2.0
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5