MakeItFrom.com
Menu (ESC)

EN 1.4903 Stainless Steel vs. EN 1.0308 Steel

Both EN 1.4903 stainless steel and EN 1.0308 steel are iron alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4903 stainless steel and the bottom bar is EN 1.0308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 21
7.8 to 28
Fatigue Strength, MPa 320 to 330
140 to 200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 420
230 to 260
Tensile Strength: Ultimate (UTS), MPa 670 to 680
360 to 440
Tensile Strength: Yield (Proof), MPa 500
190 to 340

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 650
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
51
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 4.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 36
18
Embodied Water, L/kg 88
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 130
32 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 650
93 to 300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
13 to 16
Strength to Weight: Bending, points 22
14 to 16
Thermal Diffusivity, mm2/s 7.0
14
Thermal Shock Resistance, points 23
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.080 to 0.12
0 to 0.17
Chromium (Cr), % 8.0 to 9.5
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 87.1 to 90.5
98.2 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.2
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.045
Vanadium (V), % 0.18 to 0.25
0