MakeItFrom.com
Menu (ESC)

EN 1.4912 Stainless Steel vs. EN 1.0471 Steel

Both EN 1.4912 stainless steel and EN 1.0471 steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4912 stainless steel and the bottom bar is EN 1.0471 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
23
Fatigue Strength, MPa 200
270
Impact Strength: V-Notched Charpy, J 90
38
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 420
360
Tensile Strength: Ultimate (UTS), MPa 610
580
Tensile Strength: Yield (Proof), MPa 230
380

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
52
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.2
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.5
Embodied Energy, MJ/kg 55
20
Embodied Water, L/kg 140
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.2
14
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0.040 to 0.1
0 to 0.22
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 64.6 to 73.6
97.4 to 98.8
Manganese (Mn), % 0 to 2.0
1.0 to 1.5
Nickel (Ni), % 9.0 to 12
0
Niobium (Nb), % 0.4 to 1.2
0.015 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.010