MakeItFrom.com
Menu (ESC)

EN 1.4913 Stainless Steel vs. EN 1.4501 Stainless Steel

Both EN 1.4913 stainless steel and EN 1.4501 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4913 stainless steel and the bottom bar is EN 1.4501 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 14 to 22
27
Fatigue Strength, MPa 320 to 480
430
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
80
Shear Strength, MPa 550 to 590
540
Tensile Strength: Ultimate (UTS), MPa 870 to 980
830
Tensile Strength: Yield (Proof), MPa 480 to 850
600

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 430
450
Maximum Temperature: Mechanical, °C 700
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 24
15
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
4.1
Embodied Energy, MJ/kg 41
57
Embodied Water, L/kg 97
180

Common Calculations

PREN (Pitting Resistance) 14
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 160
210
Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 1860
870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31 to 35
29
Strength to Weight: Bending, points 26 to 28
25
Thermal Diffusivity, mm2/s 6.5
4.0
Thermal Shock Resistance, points 31 to 34
22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0015
0
Carbon (C), % 0.17 to 0.23
0 to 0.030
Chromium (Cr), % 10 to 11.5
24 to 26
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 84.5 to 88.3
57.6 to 65.8
Manganese (Mn), % 0.4 to 0.9
0 to 1.0
Molybdenum (Mo), % 0.5 to 0.8
3.0 to 4.0
Nickel (Ni), % 0.2 to 0.6
6.0 to 8.0
Niobium (Nb), % 0.25 to 0.55
0
Nitrogen (N), % 0.050 to 0.1
0.2 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Tungsten (W), % 0
0.5 to 1.0
Vanadium (V), % 0.1 to 0.3
0