MakeItFrom.com
Menu (ESC)

EN 1.4923 Stainless Steel vs. C95500 Bronze

EN 1.4923 stainless steel belongs to the iron alloys classification, while C95500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4923 stainless steel and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 21
8.4 to 10
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 870 to 980
700 to 850
Tensile Strength: Yield (Proof), MPa 470 to 780
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 740
230
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 24
42
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
28
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.9
3.5
Embodied Energy, MJ/kg 41
57
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 1580
420 to 950
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 35
24 to 29
Strength to Weight: Bending, points 26 to 28
21 to 24
Thermal Diffusivity, mm2/s 6.5
11
Thermal Shock Resistance, points 30 to 34
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0.18 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
78 to 84
Iron (Fe), % 83.5 to 87.1
3.0 to 5.0
Manganese (Mn), % 0.4 to 0.9
0 to 3.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
3.0 to 5.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0.25 to 0.35
0
Residuals, % 0
0 to 0.5

Comparable Variants