MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. AISI 301LN Stainless Steel

Both EN 1.4931 steel and AISI 301LN stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
23 to 51
Fatigue Strength, MPa 410
270 to 520
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Tensile Strength: Ultimate (UTS), MPa 810
630 to 1060
Tensile Strength: Yield (Proof), MPa 620
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
890
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
15
Thermal Expansion, µm/m-K 14
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 16
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 970
180 to 1520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
22 to 38
Strength to Weight: Bending, points 25
21 to 30
Thermal Diffusivity, mm2/s 6.5
4.0
Thermal Shock Resistance, points 22
14 to 24

Alloy Composition

Carbon (C), % 0.2 to 0.26
0 to 0.030
Chromium (Cr), % 11.3 to 12.2
16 to 18
Iron (Fe), % 83.2 to 86.8
70.7 to 77.9
Manganese (Mn), % 0.5 to 0.8
0 to 2.0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0