MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C15500 Copper

EN 1.4931 steel belongs to the iron alloys classification, while C15500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
3.0 to 37
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 810
280 to 550
Tensile Strength: Yield (Proof), MPa 620
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 24
350
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
90
Electrical Conductivity: Equal Weight (Specific), % IACS 11
91

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 100
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 970
72 to 1210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 29
8.6 to 17
Strength to Weight: Bending, points 25
11 to 17
Thermal Diffusivity, mm2/s 6.5
100
Thermal Shock Resistance, points 22
9.8 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
99.75 to 99.853
Iron (Fe), % 83.2 to 86.8
0
Magnesium (Mg), % 0
0.080 to 0.13
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0.040 to 0.080
Silicon (Si), % 0 to 0.4
0
Silver (Ag), % 0
0.027 to 0.1
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Residuals, % 0
0 to 0.2