MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. C17300 Copper

EN 1.4931 steel belongs to the iron alloys classification, while C17300 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is C17300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
3.0 to 23
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
45
Tensile Strength: Ultimate (UTS), MPa 810
500 to 1380
Tensile Strength: Yield (Proof), MPa 620
160 to 1200

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 600
270
Melting Completion (Liquidus), °C 1460
980
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 24
110
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
22
Electrical Conductivity: Equal Weight (Specific), % IACS 11
23

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.9
9.4
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
40 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 970
110 to 5410
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29
16 to 44
Strength to Weight: Bending, points 25
16 to 31
Thermal Diffusivity, mm2/s 6.5
32
Thermal Shock Resistance, points 22
17 to 48

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
1.8 to 2.0
Carbon (C), % 0.2 to 0.26
0
Chromium (Cr), % 11.3 to 12.2
0
Copper (Cu), % 0
95.5 to 97.8
Iron (Fe), % 83.2 to 86.8
0 to 0.4
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0.5 to 0.8
0
Molybdenum (Mo), % 1.0 to 1.2
0
Nickel (Ni), % 0 to 1.0
0.2 to 0.6
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0
Residuals, % 0
0 to 0.5