MakeItFrom.com
Menu (ESC)

EN 1.4931 Steel vs. S44725 Stainless Steel

Both EN 1.4931 steel and S44725 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4931 steel and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
22
Fatigue Strength, MPa 410
210
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Tensile Strength: Ultimate (UTS), MPa 810
500
Tensile Strength: Yield (Proof), MPa 620
310

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
17
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 100
170

Common Calculations

PREN (Pitting Resistance) 16
33
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
99
Resilience: Unit (Modulus of Resilience), kJ/m3 970
240
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
18
Strength to Weight: Bending, points 25
18
Thermal Diffusivity, mm2/s 6.5
4.6
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0.2 to 0.26
0 to 0.015
Chromium (Cr), % 11.3 to 12.2
25 to 28.5
Iron (Fe), % 83.2 to 86.8
67.6 to 73.5
Manganese (Mn), % 0.5 to 0.8
0 to 0.4
Molybdenum (Mo), % 1.0 to 1.2
1.5 to 2.5
Nickel (Ni), % 0 to 1.0
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0
0 to 0.018
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.040
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0
0 to 0.26
Tungsten (W), % 0 to 0.5
0
Vanadium (V), % 0.25 to 0.35
0