MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. 514.0 Aluminum

EN 1.4935 stainless steel belongs to the iron alloys classification, while 514.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is 514.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 16 to 18
7.3
Fatigue Strength, MPa 350 to 400
48
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Shear Strength, MPa 480 to 540
140
Tensile Strength: Ultimate (UTS), MPa 780 to 880
180
Tensile Strength: Yield (Proof), MPa 570 to 670
74

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 24
140
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
35
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.9
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
11
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
41
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28 to 31
19
Strength to Weight: Bending, points 24 to 26
26
Thermal Diffusivity, mm2/s 6.5
57
Thermal Shock Resistance, points 27 to 30
7.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.6 to 96.5
Carbon (C), % 0.17 to 0.24
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 83 to 86.7
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0.3 to 0.8
0 to 0.35
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.1 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15