MakeItFrom.com
Menu (ESC)

EN 1.4935 Stainless Steel vs. EN 1.7725 Steel

Both EN 1.4935 stainless steel and EN 1.7725 steel are iron alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4935 stainless steel and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16 to 18
14
Fatigue Strength, MPa 350 to 400
390 to 550
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Tensile Strength: Ultimate (UTS), MPa 780 to 880
830 to 1000
Tensile Strength: Yield (Proof), MPa 570 to 670
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
440
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 24
39
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.8
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 100
54

Common Calculations

PREN (Pitting Resistance) 16
2.8
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 830 to 1160
980 to 1940
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 31
29 to 35
Strength to Weight: Bending, points 24 to 26
25 to 28
Thermal Diffusivity, mm2/s 6.5
11
Thermal Shock Resistance, points 27 to 30
24 to 29

Alloy Composition

Carbon (C), % 0.17 to 0.24
0.27 to 0.34
Chromium (Cr), % 11 to 12.5
1.3 to 1.7
Iron (Fe), % 83 to 86.7
95.7 to 97.5
Manganese (Mn), % 0.3 to 0.8
0.6 to 1.0
Molybdenum (Mo), % 0.8 to 1.2
0.3 to 0.5
Nickel (Ni), % 0.3 to 0.8
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.1 to 0.5
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 0.4 to 0.6
0
Vanadium (V), % 0.2 to 0.35
0.050 to 0.15