MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. Grade Ti-Pd18 Titanium

EN 1.4938 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 17
17
Fatigue Strength, MPa 390 to 520
350
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
710
Tensile Strength: Yield (Proof), MPa 640 to 870
540

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 750
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 30
8.2
Thermal Expansion, µm/m-K 11
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.3
41
Embodied Energy, MJ/kg 47
670
Embodied Water, L/kg 110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 31 to 37
44
Strength to Weight: Bending, points 26 to 29
39
Thermal Diffusivity, mm2/s 8.1
3.3
Thermal Shock Resistance, points 30 to 35
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.080 to 0.15
0 to 0.1
Chromium (Cr), % 11 to 12.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 80.5 to 84.8
0 to 0.25
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.050
Nitrogen (N), % 0.020 to 0.040
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0.25 to 0.4
2.0 to 3.0
Residuals, % 0
0 to 0.4