MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. C67600 Bronze

EN 1.4938 stainless steel belongs to the iron alloys classification, while C67600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is C67600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 16 to 17
13 to 33
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 540 to 630
270 to 350
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
430 to 570
Tensile Strength: Yield (Proof), MPa 640 to 870
170 to 380

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 750
120
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1420
870
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 30
110
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
27

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.3
2.8
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
63 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
140 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 37
15 to 20
Strength to Weight: Bending, points 26 to 29
16 to 19
Thermal Diffusivity, mm2/s 8.1
35
Thermal Shock Resistance, points 30 to 35
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 80.5 to 84.8
0.4 to 1.3
Lead (Pb), % 0
0.5 to 1.0
Manganese (Mn), % 0.4 to 0.9
0.050 to 0.5
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
35.2 to 41.6
Residuals, % 0
0 to 0.5