MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. C87900 Brass

EN 1.4938 stainless steel belongs to the iron alloys classification, while C87900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 17
25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
480
Tensile Strength: Yield (Proof), MPa 640 to 870
240

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 750
130
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 30
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
15
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 47
46
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
270
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 37
17
Strength to Weight: Bending, points 26 to 29
17
Thermal Diffusivity, mm2/s 8.1
37
Thermal Shock Resistance, points 30 to 35
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
63 to 69.2
Iron (Fe), % 80.5 to 84.8
0 to 0.4
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0.4 to 0.9
0 to 0.15
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.5
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0 to 0.5
0.8 to 1.2
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
30 to 36