MakeItFrom.com
Menu (ESC)

EN 1.4938 Stainless Steel vs. C97800 Nickel Silver

EN 1.4938 stainless steel belongs to the iron alloys classification, while C97800 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4938 stainless steel and the bottom bar is C97800 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 16 to 17
10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
48
Tensile Strength: Ultimate (UTS), MPa 870 to 1030
370
Tensile Strength: Yield (Proof), MPa 640 to 870
170

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 750
230
Melting Completion (Liquidus), °C 1460
1180
Melting Onset (Solidus), °C 1420
1140
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 30
25
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
40
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.3
5.1
Embodied Energy, MJ/kg 47
76
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1920
120
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 37
12
Strength to Weight: Bending, points 26 to 29
13
Thermal Diffusivity, mm2/s 8.1
7.3
Thermal Shock Resistance, points 30 to 35
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
64 to 67
Iron (Fe), % 80.5 to 84.8
0 to 1.5
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0.4 to 0.9
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
24 to 27
Nitrogen (N), % 0.020 to 0.040
0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
4.0 to 5.5
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
1.0 to 4.0
Residuals, % 0
0 to 0.4