MakeItFrom.com
Menu (ESC)

EN 1.4945 Stainless Steel vs. ASTM A356 Grade 9

Both EN 1.4945 stainless steel and ASTM A356 grade 9 are iron alloys. They have 64% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4945 stainless steel and the bottom bar is ASTM A356 grade 9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 220
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 19 to 34
17
Fatigue Strength, MPa 230 to 350
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 640 to 740
670
Tensile Strength: Yield (Proof), MPa 290 to 550
460

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 920
440
Melting Completion (Liquidus), °C 1490
1470
Melting Onset (Solidus), °C 1440
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 14
41
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
3.6
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 5.0
2.4
Embodied Energy, MJ/kg 73
33
Embodied Water, L/kg 150
56

Common Calculations

PREN (Pitting Resistance) 23
4.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 180
100
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 760
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 25
24
Strength to Weight: Bending, points 20 to 22
22
Thermal Diffusivity, mm2/s 3.7
11
Thermal Shock Resistance, points 14 to 16
19

Alloy Composition

Carbon (C), % 0.040 to 0.1
0 to 0.2
Chromium (Cr), % 15.5 to 17.5
1.0 to 1.5
Iron (Fe), % 57.9 to 65.7
95.2 to 97.2
Manganese (Mn), % 0 to 1.5
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0.060 to 0.14
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0.3 to 0.6
0.2 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0
0.2 to 0.35