MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. EN 1.4458 Stainless Steel

Both EN 1.4958 stainless steel and EN 1.4458 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is EN 1.4458 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
34
Fatigue Strength, MPa 170
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 630
510
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 500
430
Maximum Temperature: Mechanical, °C 1090
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1350
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 15
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.3
5.4
Embodied Energy, MJ/kg 75
75
Embodied Water, L/kg 200
200

Common Calculations

PREN (Pitting Resistance) 21
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
140
Resilience: Unit (Modulus of Resilience), kJ/m3 95
89
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 3.2
4.2
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0 to 0.030
Chromium (Cr), % 19 to 22
19 to 22
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0 to 2.0
Iron (Fe), % 41.1 to 50.6
40.2 to 53
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 30 to 32.5
26 to 30
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0 to 0.2
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0.2 to 0.5
0