MakeItFrom.com
Menu (ESC)

EN 1.4958 Stainless Steel vs. S21640 Stainless Steel

Both EN 1.4958 stainless steel and S21640 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4958 stainless steel and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
46
Fatigue Strength, MPa 170
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 430
520
Tensile Strength: Ultimate (UTS), MPa 630
740
Tensile Strength: Yield (Proof), MPa 190
350

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 500
490
Maximum Temperature: Mechanical, °C 1090
940
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1350
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
17
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 5.3
3.6
Embodied Energy, MJ/kg 75
51
Embodied Water, L/kg 200
150

Common Calculations

PREN (Pitting Resistance) 21
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
280
Resilience: Unit (Modulus of Resilience), kJ/m3 95
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 3.2
4.0
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0.2 to 0.5
0
Carbon (C), % 0.030 to 0.080
0 to 0.080
Chromium (Cr), % 19 to 22
17.5 to 19.5
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 41.1 to 50.6
63 to 74.3
Manganese (Mn), % 0 to 1.5
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 30 to 32.5
4.0 to 6.5
Niobium (Nb), % 0 to 0.1
0.1 to 1.0
Nitrogen (N), % 0 to 0.030
0.080 to 0.3
Phosphorus (P), % 0 to 0.015
0 to 0.060
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.2 to 0.5
0