MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. C82600 Copper

EN 1.5662 steel belongs to the iron alloys classification, while C82600 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
46
Tensile Strength: Ultimate (UTS), MPa 740 to 750
570 to 1140
Tensile Strength: Yield (Proof), MPa 550 to 660
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Maximum Temperature: Mechanical, °C 430
300
Melting Completion (Liquidus), °C 1460
950
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
19
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
20

Otherwise Unclassified Properties

Density, g/cm3 8.0
8.7
Embodied Carbon, kg CO2/kg material 2.3
11
Embodied Energy, MJ/kg 31
180
Embodied Water, L/kg 63
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
430 to 4690
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
18 to 36
Strength to Weight: Bending, points 23
17 to 28
Thermal Shock Resistance, points 22
19 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 0
94.9 to 97.2
Iron (Fe), % 88.6 to 91.2
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.3 to 0.8
0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0.2 to 0.35
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5