MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. C86300 Bronze

EN 1.5662 steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 230
250
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
14
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 740 to 750
850
Tensile Strength: Yield (Proof), MPa 550 to 660
480

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
420
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
23
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.3
3.0
Embodied Energy, MJ/kg 31
51
Embodied Water, L/kg 63
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
100
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
1030
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
30
Strength to Weight: Bending, points 23
25
Thermal Shock Resistance, points 22
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 88.6 to 91.2
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.3 to 0.8
2.5 to 5.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
0 to 1.0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.2
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0