MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. N07752 Nickel

EN 1.5662 steel belongs to the iron alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
22
Fatigue Strength, MPa 380 to 450
450
Poisson's Ratio 0.29
0.29
Reduction in Area, % 56 to 57
23
Shear Modulus, GPa 73
73
Shear Strength, MPa 460 to 470
710
Tensile Strength: Ultimate (UTS), MPa 740 to 750
1120
Tensile Strength: Yield (Proof), MPa 550 to 660
740

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 430
960
Melting Completion (Liquidus), °C 1460
1380
Melting Onset (Solidus), °C 1410
1330
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
60
Density, g/cm3 8.0
8.4
Embodied Carbon, kg CO2/kg material 2.3
10
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 63
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
220
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
1450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 26
37
Strength to Weight: Bending, points 23
29
Thermal Shock Resistance, points 22
34

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0 to 0.1
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 88.6 to 91.2
5.0 to 9.0
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 8.5 to 10
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.020
0 to 0.0080
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0 to 0.050
0 to 0.1
Zinc (Zn), % 0
0 to 0.050