MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. N09777 Nickel

EN 1.5662 steel belongs to the iron alloys classification, while N09777 nickel belongs to the nickel alloys. They have 48% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
39
Fatigue Strength, MPa 380 to 450
190
Poisson's Ratio 0.29
0.29
Reduction in Area, % 56 to 57
57
Shear Modulus, GPa 73
77
Shear Strength, MPa 460 to 470
400
Tensile Strength: Ultimate (UTS), MPa 740 to 750
580
Tensile Strength: Yield (Proof), MPa 550 to 660
240

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 430
960
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
38
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.3
7.4
Embodied Energy, MJ/kg 31
100
Embodied Water, L/kg 63
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 23
19
Thermal Shock Resistance, points 22
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
14 to 19
Iron (Fe), % 88.6 to 91.2
28.5 to 47.5
Manganese (Mn), % 0.3 to 0.8
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
2.5 to 5.5
Nickel (Ni), % 8.5 to 10
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.010
Titanium (Ti), % 0
2.0 to 3.0
Vanadium (V), % 0 to 0.050
0