MakeItFrom.com
Menu (ESC)

EN 1.5662 Steel vs. N10675 Nickel

EN 1.5662 steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.5662 steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 20
47
Fatigue Strength, MPa 380 to 450
350
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
85
Shear Strength, MPa 460 to 470
610
Tensile Strength: Ultimate (UTS), MPa 740 to 750
860
Tensile Strength: Yield (Proof), MPa 550 to 660
400

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 430
910
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.7
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.8
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
80
Density, g/cm3 8.0
9.3
Embodied Carbon, kg CO2/kg material 2.3
16
Embodied Energy, MJ/kg 31
210
Embodied Water, L/kg 63
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
330
Resilience: Unit (Modulus of Resilience), kJ/m3 810 to 1150
350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 26
26
Strength to Weight: Bending, points 23
22
Thermal Shock Resistance, points 22
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.1
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 88.6 to 91.2
1.0 to 3.0
Manganese (Mn), % 0.3 to 0.8
0 to 3.0
Molybdenum (Mo), % 0 to 0.1
27 to 32
Nickel (Ni), % 8.5 to 10
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.0050
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0 to 0.050
0 to 0.2
Zinc (Zn), % 0
0 to 0.1