MakeItFrom.com
Menu (ESC)

EN 1.7376 Steel vs. C95500 Bronze

EN 1.7376 steel belongs to the iron alloys classification, while C95500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.7376 steel and the bottom bar is C95500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
8.4 to 10
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 710
700 to 850
Tensile Strength: Yield (Proof), MPa 460
320 to 470

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 600
230
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 26
42
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
28
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.1
3.5
Embodied Energy, MJ/kg 29
57
Embodied Water, L/kg 88
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
58 to 61
Resilience: Unit (Modulus of Resilience), kJ/m3 560
420 to 950
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
24 to 29
Strength to Weight: Bending, points 23
21 to 24
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 20
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0.12 to 0.19
0
Chromium (Cr), % 8.0 to 10
0
Copper (Cu), % 0 to 0.3
78 to 84
Iron (Fe), % 86.2 to 90.6
3.0 to 5.0
Manganese (Mn), % 0.35 to 0.65
0 to 3.5
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.4
3.0 to 5.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Residuals, % 0
0 to 0.5