MakeItFrom.com
Menu (ESC)

EN 1.8881 Steel vs. EN 1.4006 Stainless Steel

Both EN 1.8881 steel and EN 1.4006 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8881 steel and the bottom bar is EN 1.4006 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
16 to 23
Fatigue Strength, MPa 460
150 to 300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 510
370 to 460
Tensile Strength: Ultimate (UTS), MPa 830
590 to 750
Tensile Strength: Yield (Proof), MPa 710
230 to 510

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 420
740
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.9
1.9
Embodied Energy, MJ/kg 26
27
Embodied Water, L/kg 54
100

Common Calculations

PREN (Pitting Resistance) 2.0
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
99 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
140 to 660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
21 to 27
Strength to Weight: Bending, points 25
20 to 24
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 24
21 to 26

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.080 to 0.15
Chromium (Cr), % 0 to 1.5
11.5 to 13.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
83.1 to 88.4
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0 to 0.75
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0