MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. AWS ER90S-D2

Both EN 1.8888 steel and AWS ER90S-D2 are iron alloys. They have a very high 98% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is AWS ER90S-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 830
710
Tensile Strength: Yield (Proof), MPa 720
600

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
47
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.6
Embodied Energy, MJ/kg 26
21
Embodied Water, L/kg 54
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
980
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
25
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 24
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.070 to 0.12
Chromium (Cr), % 0 to 1.5
0
Copper (Cu), % 0 to 0.3
0 to 0.5
Iron (Fe), % 91.9 to 100
95.2 to 97.4
Manganese (Mn), % 0 to 1.7
1.6 to 2.1
Molybdenum (Mo), % 0 to 0.7
0.4 to 0.6
Nickel (Ni), % 0 to 2.5
0 to 0.15
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.8
0.5 to 0.8
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5