MakeItFrom.com
Menu (ESC)

EN 1.8888 Steel vs. SAE-AISI 5140 Steel

Both EN 1.8888 steel and SAE-AISI 5140 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8888 steel and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170 to 290
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
12 to 29
Fatigue Strength, MPa 470
220 to 570
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 510
360 to 600
Tensile Strength: Ultimate (UTS), MPa 830
560 to 970
Tensile Strength: Yield (Proof), MPa 720
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 420
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
45
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.4
Embodied Energy, MJ/kg 26
19
Embodied Water, L/kg 54
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
220 to 1880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
20 to 34
Strength to Weight: Bending, points 25
19 to 28
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 24
16 to 29

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0.38 to 0.43
Chromium (Cr), % 0 to 1.5
0.7 to 0.9
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
97.3 to 98.1
Manganese (Mn), % 0 to 1.7
0.7 to 0.9
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.8
0.15 to 0.35
Sulfur (S), % 0 to 0.0050
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0
Zirconium (Zr), % 0 to 0.15
0