MakeItFrom.com
Menu (ESC)

EN 2.4669 Nickel vs. 1050 Aluminum

EN 2.4669 nickel belongs to the nickel alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4669 nickel and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 16
4.6 to 37
Fatigue Strength, MPa 390
31 to 57
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 680
52 to 81
Tensile Strength: Ultimate (UTS), MPa 1110
76 to 140
Tensile Strength: Yield (Proof), MPa 720
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
650
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
230
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
200

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 260
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
4.6 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 37
7.8 to 14
Strength to Weight: Bending, points 28
15 to 22
Thermal Diffusivity, mm2/s 3.1
94
Thermal Shock Resistance, points 33
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
99.5 to 100
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 5.0 to 9.0
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 65.9 to 77.7
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050