MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. 1050 Aluminum

EN 2.4952 nickel belongs to the nickel alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 17
4.6 to 37
Fatigue Strength, MPa 370
31 to 57
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 700
52 to 81
Tensile Strength: Ultimate (UTS), MPa 1150
76 to 140
Tensile Strength: Yield (Proof), MPa 670
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
230
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
200

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 9.8
8.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 290
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
4.6 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 38
7.8 to 14
Strength to Weight: Bending, points 29
15 to 22
Thermal Diffusivity, mm2/s 3.1
94
Thermal Shock Resistance, points 33
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 1.0 to 1.8
99.5 to 100
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 1.5
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 65 to 79.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050