MakeItFrom.com
Menu (ESC)

EN 2.4952 Nickel vs. C61400 Bronze

EN 2.4952 nickel belongs to the nickel alloys classification, while C61400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4952 nickel and the bottom bar is C61400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
34 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 700
370 to 380
Tensile Strength: Ultimate (UTS), MPa 1150
540 to 570
Tensile Strength: Yield (Proof), MPa 670
220 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1350
1050
Melting Onset (Solidus), °C 1300
1040
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 12
67
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
15

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 9.8
3.0
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 290
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
160 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
210 to 310
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 38
18 to 19
Strength to Weight: Bending, points 29
17 to 18
Thermal Diffusivity, mm2/s 3.1
19
Thermal Shock Resistance, points 33
18 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 1.8
6.0 to 8.0
Boron (B), % 0 to 0.0080
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.2
86 to 92.5
Iron (Fe), % 0 to 1.5
1.5 to 3.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 65 to 79.2
0
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.8 to 2.7
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5