MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. 5154 Aluminum

Both EN AC-21000 aluminum and 5154 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 6.7
3.4 to 20
Fatigue Strength, MPa 100
100 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 340
240 to 360
Tensile Strength: Yield (Proof), MPa 240
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
640
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
32
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 390
64 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 32
25 to 37
Strength to Weight: Bending, points 36
32 to 42
Thermal Diffusivity, mm2/s 49
52
Thermal Shock Resistance, points 15
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
94.4 to 96.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 4.2 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
3.1 to 3.9
Manganese (Mn), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0 to 0.25
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0 to 0.1
0 to 0.15