MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. 5454 Aluminum

Both EN AC-21000 aluminum and 5454 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
61 to 93
Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 6.7
2.3 to 18
Fatigue Strength, MPa 100
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 340
230 to 350
Tensile Strength: Yield (Proof), MPa 240
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 670
650
Melting Onset (Solidus), °C 550
600
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 390
68 to 590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 32
23 to 36
Strength to Weight: Bending, points 36
30 to 41
Thermal Diffusivity, mm2/s 49
55
Thermal Shock Resistance, points 15
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
94.5 to 97.1
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 4.2 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
2.4 to 3.0
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.2
0 to 0.25
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0 to 0.1
0 to 0.15