MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. ACI-ASTM CG6MMN Steel

EN AC-21000 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CG6MMN steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is ACI-ASTM CG6MMN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.7
34
Fatigue Strength, MPa 100
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 340
670
Tensile Strength: Yield (Proof), MPa 240
320

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 670
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 11
22
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
4.8
Embodied Energy, MJ/kg 150
68
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
190
Resilience: Unit (Modulus of Resilience), kJ/m3 390
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 36
22
Thermal Shock Resistance, points 15
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
51.9 to 62.1
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.050
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0