MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. EN 1.3975 Stainless Steel

EN AC-21000 aluminum belongs to the aluminum alloys classification, while EN 1.3975 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is EN 1.3975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
190
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 6.7
27
Fatigue Strength, MPa 100
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 340
660
Tensile Strength: Yield (Proof), MPa 240
320

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 670
1360
Melting Onset (Solidus), °C 550
1320
Specific Heat Capacity, J/kg-K 880
500
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
15
Density, g/cm3 3.0
7.5
Embodied Carbon, kg CO2/kg material 8.0
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
150
Resilience: Unit (Modulus of Resilience), kJ/m3 390
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 36
22
Thermal Shock Resistance, points 15
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
58.2 to 65.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0