MakeItFrom.com
Menu (ESC)

EN AC-21000 Aluminum vs. EN 1.4361 Stainless Steel

EN AC-21000 aluminum belongs to the aluminum alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21000 aluminum and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
200
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 6.7
43
Fatigue Strength, MPa 100
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 340
630
Tensile Strength: Yield (Proof), MPa 240
250

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 670
1370
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.0
3.6
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
220
Resilience: Unit (Modulus of Resilience), kJ/m3 390
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 32
23
Strength to Weight: Bending, points 36
21
Thermal Diffusivity, mm2/s 49
3.7
Thermal Shock Resistance, points 15
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 4.2 to 5.0
0
Iron (Fe), % 0 to 0.35
58.7 to 65.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.15 to 0.35
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.050
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0