MakeItFrom.com
Menu (ESC)

EN AC-21100 Aluminum vs. AWS E320

EN AC-21100 aluminum belongs to the aluminum alloys classification, while AWS E320 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21100 aluminum and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 6.2 to 7.3
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 340 to 350
620

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 670
1410
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 880
460
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
38
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.0
6.5
Embodied Energy, MJ/kg 150
91
Embodied Water, L/kg 1150
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 31 to 33
21
Strength to Weight: Bending, points 36 to 37
20
Thermal Shock Resistance, points 15
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.4 to 95.7
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 4.2 to 5.2
3.0 to 4.0
Iron (Fe), % 0 to 0.19
31.8 to 43.5
Manganese (Mn), % 0 to 0.55
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.18
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.15 to 0.3
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0