MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. 5010 Aluminum

Both EN AC-21200 aluminum and 5010 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 3.9 to 6.2
1.1 to 23
Fatigue Strength, MPa 110 to 130
35 to 83
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 410 to 440
100 to 210
Tensile Strength: Yield (Proof), MPa 270 to 360
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 660
650
Melting Onset (Solidus), °C 550
630
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
45
Electrical Conductivity: Equal Weight (Specific), % IACS 100
150

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
10 to 270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 38 to 40
10 to 22
Strength to Weight: Bending, points 41 to 43
18 to 29
Thermal Diffusivity, mm2/s 49
82
Thermal Shock Resistance, points 18 to 19
4.5 to 9.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.7
97.1 to 99.7
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 4.0 to 5.0
0 to 0.25
Iron (Fe), % 0 to 0.2
0 to 0.7
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
0.2 to 0.6
Manganese (Mn), % 0.2 to 0.5
0.1 to 0.3
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.3
Residuals, % 0 to 0.1
0 to 0.15