MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. EN 1.4006 Stainless Steel

EN AC-21200 aluminum belongs to the aluminum alloys classification, while EN 1.4006 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is EN 1.4006 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.9 to 6.2
16 to 23
Fatigue Strength, MPa 110 to 130
150 to 300
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 410 to 440
590 to 750
Tensile Strength: Yield (Proof), MPa 270 to 360
230 to 510

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 660
1440
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1150
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
99 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
140 to 660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 38 to 40
21 to 27
Strength to Weight: Bending, points 41 to 43
20 to 24
Thermal Diffusivity, mm2/s 49
8.1
Thermal Shock Resistance, points 18 to 19
21 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 95.7
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.2
83.1 to 88.4
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.050
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0

Comparable Variants