MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. Grade TDSiCr Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while grade TDSiCr steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is grade TDSiCr steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 57 to 97
590
Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 170 to 280
1950

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 630
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
46
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1160
48

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 18 to 29
70
Strength to Weight: Bending, points 26 to 35
45
Thermal Diffusivity, mm2/s 69
12
Thermal Shock Resistance, points 7.8 to 13
58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0.5 to 0.6
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.6
96.6 to 97.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0.5 to 0.9
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.6 to 2.4
1.2 to 1.6
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0