MakeItFrom.com
Menu (ESC)

EN AC-43400 Aluminum vs. 518.0 Aluminum

Both EN AC-43400 aluminum and 518.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43400 aluminum and the bottom bar is 518.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
80
Elastic (Young's, Tensile) Modulus, GPa 72
67
Elongation at Break, % 1.1
5.0
Fatigue Strength, MPa 110
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 270
310
Tensile Strength: Yield (Proof), MPa 160
190

Thermal Properties

Latent Heat of Fusion, J/g 540
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
620
Melting Onset (Solidus), °C 590
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
98
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
24
Electrical Conductivity: Equal Weight (Specific), % IACS 110
81

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
9.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
14
Resilience: Unit (Modulus of Resilience), kJ/m3 180
270
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 29
32
Strength to Weight: Bending, points 36
38
Thermal Diffusivity, mm2/s 59
40
Thermal Shock Resistance, points 12
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86 to 90.8
88.1 to 92.5
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 1.0
0 to 1.8
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.5
7.5 to 8.5
Manganese (Mn), % 0 to 0.55
0 to 0.35
Nickel (Ni), % 0 to 0.15
0 to 0.15
Silicon (Si), % 9.0 to 11
0 to 0.35
Tin (Sn), % 0 to 0.050
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.15
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.25