MakeItFrom.com
Menu (ESC)

EN AC-44500 Aluminum vs. 4147 Aluminum

Both EN AC-44500 aluminum and 4147 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. Their average alloy composition is basically identical. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-44500 aluminum and the bottom bar is 4147 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 1.1
3.3
Fatigue Strength, MPa 110
42
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 270
110
Tensile Strength: Yield (Proof), MPa 160
59

Thermal Properties

Latent Heat of Fusion, J/g 570
570
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
580
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.5
2.5
Embodied Carbon, kg CO2/kg material 7.7
7.7
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1050
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6
3.1
Resilience: Unit (Modulus of Resilience), kJ/m3 180
24
Stiffness to Weight: Axial, points 16
16
Stiffness to Weight: Bending, points 55
55
Strength to Weight: Axial, points 29
12
Strength to Weight: Bending, points 36
20
Thermal Diffusivity, mm2/s 57
58
Thermal Shock Resistance, points 13
5.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 83.7 to 89.5
85 to 88.9
Beryllium (Be), % 0
0 to 0.00030
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 1.0
0 to 0.8
Magnesium (Mg), % 0 to 0.4
0.1 to 0.5
Manganese (Mn), % 0 to 0.55
0 to 0.1
Silicon (Si), % 10.5 to 13.5
11 to 13
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.3
0 to 0.2
Residuals, % 0 to 0.25
0 to 0.15