MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. C32000 Brass

EN AC-45100 aluminum belongs to the aluminum alloys classification, while C32000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.0 to 2.8
6.8 to 29
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 300 to 360
270 to 470
Tensile Strength: Yield (Proof), MPa 210 to 320
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 470
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
1020
Melting Onset (Solidus), °C 550
990
Specific Heat Capacity, J/kg-K 890
380
Thermal Conductivity, W/m-K 140
160
Thermal Expansion, µm/m-K 22
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
36
Electrical Conductivity: Equal Weight (Specific), % IACS 95
37

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 2.8
8.7
Embodied Carbon, kg CO2/kg material 7.9
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 30 to 35
8.8 to 15
Strength to Weight: Bending, points 35 to 39
11 to 16
Thermal Diffusivity, mm2/s 54
47
Thermal Shock Resistance, points 14 to 16
9.5 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88 to 92.8
0
Copper (Cu), % 2.6 to 3.6
83.5 to 86.5
Iron (Fe), % 0 to 0.6
0 to 0.1
Lead (Pb), % 0 to 0.1
1.5 to 2.2
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.1
0 to 0.25
Silicon (Si), % 4.5 to 6.0
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
10.6 to 15
Residuals, % 0 to 0.15
0 to 0.4