MakeItFrom.com
Menu (ESC)

EN AC-46500 Aluminum vs. N08904 Stainless Steel

EN AC-46500 aluminum belongs to the aluminum alloys classification, while N08904 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-46500 aluminum and the bottom bar is N08904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
170
Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 1.0
38
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
79
Tensile Strength: Ultimate (UTS), MPa 270
540
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 520
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 520
1390
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 7.6
5.8
Embodied Energy, MJ/kg 140
79
Embodied Water, L/kg 1030
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
170
Resilience: Unit (Modulus of Resilience), kJ/m3 170
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 32
18
Thermal Diffusivity, mm2/s 41
3.1
Thermal Shock Resistance, points 12
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 77.9 to 90
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.15
19 to 23
Copper (Cu), % 2.0 to 4.0
1.0 to 2.0
Iron (Fe), % 0 to 1.3
38.8 to 53
Lead (Pb), % 0 to 0.35
0
Magnesium (Mg), % 0.050 to 0.55
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.55
23 to 28
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.0 to 11
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.25
0