MakeItFrom.com
Menu (ESC)

CC140C Copper vs. AWS ER120S-1

CC140C copper belongs to the copper alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC140C copper and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 340
930
Tensile Strength: Yield (Proof), MPa 230
830

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Melting Completion (Liquidus), °C 1100
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 310
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 77
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 78
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
4.2
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 41
25
Embodied Water, L/kg 310
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
150
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1850
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 10
33
Strength to Weight: Bending, points 12
27
Thermal Diffusivity, mm2/s 89
13
Thermal Shock Resistance, points 12
27

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.4 to 1.2
0 to 0.6
Copper (Cu), % 98.8 to 99.6
0 to 0.25
Iron (Fe), % 0
92.4 to 96.1
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5