MakeItFrom.com
Menu (ESC)

CC330G Bronze vs. Grade 24 Titanium

CC330G bronze belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC330G bronze and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 530
1010
Tensile Strength: Yield (Proof), MPa 190
940

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 220
340
Melting Completion (Liquidus), °C 1050
1610
Melting Onset (Solidus), °C 1000
1560
Specific Heat Capacity, J/kg-K 430
560
Thermal Conductivity, W/m-K 62
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.4
4.5
Embodied Carbon, kg CO2/kg material 3.2
43
Embodied Energy, MJ/kg 52
710
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
4160
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 18
63
Strength to Weight: Bending, points 17
50
Thermal Diffusivity, mm2/s 17
2.9
Thermal Shock Resistance, points 19
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.0 to 10.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 87 to 92
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.2
0 to 0.4
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0 to 0.3
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.4