MakeItFrom.com
Menu (ESC)

CC331G Bronze vs. EN 1.0038 Steel

CC331G bronze belongs to the copper alloys classification, while EN 1.0038 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC331G bronze and the bottom bar is EN 1.0038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
110 to 120
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
23 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 620
380 to 430
Tensile Strength: Yield (Proof), MPa 240
200 to 220

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 61
49
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.4
Embodied Energy, MJ/kg 53
19
Embodied Water, L/kg 390
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 97
72 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110 to 130
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21
13 to 15
Strength to Weight: Bending, points 19
15 to 16
Thermal Diffusivity, mm2/s 17
13
Thermal Shock Resistance, points 22
12 to 13

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Carbon (C), % 0
0 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 83 to 86.5
0 to 0.6
Iron (Fe), % 1.5 to 3.5
97.1 to 100
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 1.5
0 to 0.3
Nitrogen (N), % 0
0 to 0.014
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.55
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0