MakeItFrom.com
Menu (ESC)

CC333G Bronze vs. EN 1.1221 Steel

CC333G bronze belongs to the copper alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC333G bronze and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210 to 250
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 13
10 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 45
72
Tensile Strength: Ultimate (UTS), MPa 710
730 to 870
Tensile Strength: Yield (Proof), MPa 310
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 38
48
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.1
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.5
1.5
Embodied Energy, MJ/kg 56
19
Embodied Water, L/kg 380
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 410
410 to 800
Stiffness to Weight: Axial, points 8.0
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
26 to 31
Strength to Weight: Bending, points 21
23 to 26
Thermal Diffusivity, mm2/s 10
13
Thermal Shock Resistance, points 24
23 to 28

Alloy Composition

Aluminum (Al), % 8.5 to 10.5
0
Bismuth (Bi), % 0 to 0.010
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0 to 0.050
0 to 0.4
Copper (Cu), % 76 to 83
0
Iron (Fe), % 3.0 to 5.5
97.1 to 98.8
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 3.0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 3.7 to 6.0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.5
0