MakeItFrom.com
Menu (ESC)

CC334G Bronze vs. EN 1.4938 Stainless Steel

CC334G bronze belongs to the copper alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC334G bronze and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 5.6
16 to 17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
76
Tensile Strength: Ultimate (UTS), MPa 810
870 to 1030
Tensile Strength: Yield (Proof), MPa 410
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 240
270
Maximum Temperature: Mechanical, °C 240
750
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 41
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.3
Embodied Energy, MJ/kg 59
47
Embodied Water, L/kg 390
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 710
1050 to 1920
Stiffness to Weight: Axial, points 8.1
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 28
31 to 37
Strength to Weight: Bending, points 24
26 to 29
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 28
30 to 35

Alloy Composition

Aluminum (Al), % 10 to 12
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 72 to 84.5
0
Iron (Fe), % 3.0 to 7.0
80.5 to 84.8
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 2.5
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 4.0 to 7.5
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.5
0