MakeItFrom.com
Menu (ESC)

CC380H Copper-nickel vs. ASTM A182 Grade F3VCb

CC380H copper-nickel belongs to the copper alloys classification, while ASTM A182 grade F3VCb belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is CC380H copper-nickel and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
210
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 26
21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 47
74
Tensile Strength: Ultimate (UTS), MPa 310
670
Tensile Strength: Yield (Proof), MPa 120
460

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
470
Melting Completion (Liquidus), °C 1130
1470
Melting Onset (Solidus), °C 1080
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 46
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.5
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.8
2.4
Embodied Energy, MJ/kg 58
33
Embodied Water, L/kg 300
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
120
Resilience: Unit (Modulus of Resilience), kJ/m3 59
570
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.8
24
Strength to Weight: Bending, points 12
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
2.7 to 3.3
Copper (Cu), % 84.5 to 89
0 to 0.25
Iron (Fe), % 1.0 to 1.8
93.8 to 95.8
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 1.0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 9.0 to 11
0 to 0.25
Niobium (Nb), % 0 to 1.0
0.015 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.5
0